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The known solution of a semi-infinite plate with normal forces on its edge is
compared to the computed results of an assembly of solid finite elements in

Nastran.

l. Introduction

The azimuth bearing of large antennas is usually an
annular runner for hydrostatic support pads or a circular
track for support wheels. In either case the foundation
for the bearing is a cylindrical concrete pedestal or foot-
ing which supports the whole weight of the antenna.
During construction, the runner or track is positioned
accurately a few centimeters above the foundation, and
then the intervening space is packed with grout or other
suitable stable substance. It is desirable to have good
estimations for both the deflection of the bearing and for
the maximum compressive stress in the supporting grout.
Rigorous analyses of these quantities have been difficult
in the past. Current general-purpose structural analysis
programs, such as Nastran, have the capability of model-
ing the problem with an assembly of finite element plates.

In an attempt to ascertain the fineness of the grid point
spacing required to give acceptable results, a relatively
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simple problem was modeled which has a known closed
form solution. By comparing the results of a few models
of different fineness to the exact solution, the fineness
required to produce satisfactory results can be deter-
mined because this problem is intimately related to the
real azimuth bearing configuration.

Il. The Related Simple Problem

The relatively simple problem is the determination of
the deflection and stresses in a semi-infinite plate having
a uniformly distributed pressure applied over a finite
length of its edge. Since the pads or wheel groups of the
real bearing are spaced far apart on a large radius, it is
believed that the semi-infinite plate approximates the real
problem insofar as vertical deflections are concerned. A
discussion of the maximum grout stresses when a runner
or track is interposed between the applied load and grout
will appear in a subsequent report.
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In Fig. 1 is shown the pressure loading p on the semi-
infinite plate. The origins of the spacial coordinates Y
and R are the edge of the undeflected plate and the center
of the loaded area, respectively. The vertical deflections
V of the edge of the plate parallel to coordinate Y are
derived by a coordinate transformation of the equations
of Ref. 1, page 92, and are as follows:
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where

V, is the surface deflection under the loaded area of
length 2a

V, is the surface deflection outside the loaded area
p is the applied uniform pressure load

E is the modulus of elasticity of the semi-infinite
plate

v is Poisson’s ratio

¢ = d/a where d is the vertical distance beneath the
center of the loaded area at which the deflection is
assumed to be zero

A = R/a, where R is the horizontal coordinate

Equations (1) and (2) may be evaluated conveniently
over a large range of A by the following single equation:
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where the value of f()) is given by the curve of Fig. 2.
This curve represents the relative deflections of points on
the edge of the plate.

The first and second derivatives of the vertical dis-
placements are as follows:
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82

av, 2p _
TR -F [ln()\ N)—-In(x+1)], aA>1 (6)
dv, 2p 2
dR® ~ mak [v—l]’ r>1 @

The horizontal displacements at the surface are:
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The principal stresses are derived from Ref. 1, pages
89-92. Figure 3 defines the two principal directions,
namely, radial and tangential, The principal stresses at
any point P are:

Oratiat = — ( + sin a) (10)
Otangential — :_;rg (a — sin (l) (11)

For points a distance d beneath the center of the
loaded area, the radial (vertical) principal stress is

Cragial = ~Tp [2 arc tan% + sin (2 arc tan %)] (12)

Ill. Finite Element Model

The finite element model was built up of solid hexa-
hedron isoparametric elements, each element having 12
straight edges and eight corners attached to grid points.
A one-element-thick layered model, as shown in Fig. 4,
was built up using a simple computing program to gener-
ate all of the necessary input data.

Symmetric plane constraints were generated for the
centerline and one side of the plane of elements to simu-
late a plate. Ground constraints were attached to the
bottom nodes (points of zero vertical deflections). An
alternate solution used additional side constraints to
simulate a two-dimensional problem.

Two mesh patterns were used. The finer mesh configu-
ration used the finest mesh size E equal to a/4. As the
distance increased from the load point and the centerline,
the element size for one dimension was increased along
both the horizontal and vertical direction; that is, the
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aspect ratio increased. The coarse mesh configuration
started with E equal to a/2.

The computed results are presented in dimensionless
units. For the Y deflection along the top surface in Fig. 5,
the constant in Eq. (3) was transposed and Vr=E/2ap
was plotted against the horizontal distance R/a. The
exact solution using Eq. (3) is shown as the solid line, and
the fine mesh model answers with one-sided constraints
are shown by the dotted line.

Compressive stresses on the vertical centerline are com-
pared in Fig. 6. The exact solution for stress calculation
uses a model infinitely deep while the finite element
model has a fixed depth of 14.5a. The stresses at the
center of the hexahedron elements are compared to the
exact solution on the centerline for the same depth.

IV. Conclusions

1. The vertical deflections comparison along the hori-
zontal line using the one-sided constraints in the finite
element model shows an adequate match for practical
use. With the alternate two-dimensional constraint use,
the match was closer. Qur second thoughts are that the
alternate model is a closer simulation to the exact model,
as the stresses are constant throughout the cross section
for this model.

2. The compressive stress comparisons using the com-
puted center stresses in the isoparametric hexahedron
element show a good match of the results even though
the finite element model must be cut off at a definite
depth. The coarse mesh model has adequate accuracy.
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Fig. 2. Relative deflections of points on edge of plate

Fig. 4. Configuration of finite elements
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Fig. 5. Vertical deflections vs horizontal distance
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Fig. 6. Compressive stress at the vertical centerline
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